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Abstract

This paper provides estimation methods for network formation models using ob-

served data of a single large network. We characterize network formation as a simultaneous-

move game with incomplete information and allow for the effects of indirect friends

such as friends in common, so the utility from direct friends can be nonseparable.

Nonseparability poses a challenge in the estimation because each individual faces an

interdependent multinomial discrete choice problem where the choice set increases with

the number of individuals n. We propose a novel method to linearize the utility and

derive the closed form of the conditional choice probability (CCP). With the closed

form CCP, we show that the finite-player game converges to some limiting game as

n goes to infinity. We propose a two-step estimation procedure using the equilibrium

condition from the limiting game. The estimation procedure makes little assumption

on equilibrium selection, is computationally simple, and provides consistent and as-

ymptotic normal estimators for the structural parameters. Monte Carlo simulations

show that the limiting game approximates finite-player games well and can provide

accurate estimates.
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1 Introduction

This paper contributes to the as yet small literature on the estimation of game-theoretic

models of network formation.1 The purpose of the empirical analysis is to recover the

preferences of the members of the network, in particular the preferences that determine

whether a member of the network will form a link (friendship, business relation or some other

type of link) with a specific other member of the network. The preference for a link depends

in general on the characteristics of the two members, and on their position in the network,

i.e., their number of friends, their number of common friends. It is the dependence of the

link preference on the position in the network that complicates the analysis. The preference

also depends on unobservable features of the members and the link and assumptions on the

nature of these unobservables play a key role in the empirical analysis.

In principle link formation models are discrete choice models where multiple alternatives

(links) can be chosen. If the agent has a myopic strategy s/he chooses to form a link if the

utility of the link is larger than the utility of not forming the link. There are two reasons why

such a strategy is suboptimal. First, the agent is better offconsidering the choice of links with

the other members in the network simultaneously. Second all members in the network are

making link choices and all these choices have to be consistent. In this paper the consistency

is achieved by assuming that the observed network is a Bayesian Nash equilibrium.

In general there is no unique Bayesian Nash equilibrium. This implies that full-information

methods, either have to specify an equilibrium selection mechanism or have to consider par-

tial instead of point identification of the preference parameters. In this paper we propose a

limited-information method that is valid even if we do not know the equilibrium selection

mechanism.

Assumptions regarding the unobservables in the link preferences play an important role

in the empirical analysis. The extreme assumptions are complete information where all

members (but not the econometrician) know the unobservables in the preferences for links

for all members and incomplete information where a member only knows its own link specific

unobservables. The complete information models are the hardest to estimate and they

achieve set and not point identification of the parameters (Miyauchi, 2013 and Sheng, 2014).

Leung (2014) considers a model in which an agent only knows the link unobservable when

considering to form that link. In this paper we consider a case in which the agent knows

her/his own unobserved link preferences, but not those of other agents. So our assumption

is between that in Leung (2014) and complete information, and our assumption is also in

line with the usual assumption in discrete choice models.

1Jackson (2008) surveys game-theoretic models of network formation.
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A further distinction in the empirical literature regards the data. We can have data on

a large number of small networks, e.g., friendship networks in classrooms, or we can have

data on a single large network. This paper considers the latter case (Menzel 2015, Leung,

2014, and De Paula, Richards-Shubik and Tamer, 2014 also consider large networks). An

advantage of the large single network case is that for a fairly general utility function under a

Bayesian Nash equilibrium the link choices converge to the myopic decision rule of a single

agent, because the normalized preferences converge to the preferences for this case. This is

true even though the link preferences depend on a non-trivial and non-vanishing way on the

position of the agent in the network. This simplification only holds if we add a ’suffi cient

statistic’that captures network position and that is derived by letting the number of agents

grow large to the random utility model for links. An implication of this result is that we can

estimate preference parameters by a two-step MLE or GMM procedure. Since this procedure

only uses the ’first-order condition’for optimal link choice it does not require an assumption

on equilibrium selection.

The plan of the paper is as follows. In Section 2 we introduce the model and the specific

utility function that we will use. We also discuss the Bayesian Nash equilibrium for the

network. In Section 3 we obtain a closed-form expression for the link-formation probability

that avoids the solution of an integer program. We also discuss the (uniform) convergence

of the choice probabilities if the network size grows without bounds. Section 4 discusses the

two-step GMM estimator and Section 5 presents a simulation study. Section 6 considers the

extension to undirected networks.

2 Model

Suppose there are n individuals, denoted by N = {1, . . . , n}, who can form links. The links

form a network, which we denote by G ∈ G. This is an n × n binary matrix. Its (i, j)

element Gij = 1 if i, j are linked and 0 otherwise. We first consider directed networks,

i.e., Gij and Gji may be different. The case of undirected links is discussed in Section 5.

Let Gi = (Gij)j 6=i ∈ Gi be the links of individual i and G−i = {Gj}j 6=i ∈ G−i the links of
individuals other than i.

Each individual i has a vector of observed characteristics Xi ∈ X and a vector of un-

observed preference shocks εi = (εij)j 6=i ∈ Rn−1, where εij is i’s preference for link ij. We
assume that Xi is publicly observed by all the n individuals, but εi is only privately observed

by individual i, so the information each i knows is (X, εi), where X = (Xi)i∈N . Moreover,

we assume that the private information is i.i.d. and is independent of the observables.

3



Assumption 1 (i) εij, i 6= j ∈ N , are i.i.d. with a distribution F (θε) that is absolutely

continuous with respect to Lebesgue measure. F (θε) is known up to θε ∈ Θε ⊂ Rdε. (ii) X
and ε = (εi)i∈N are independent. (iii) The support of X has finite number of distinct values,

X =
{
x1, . . . , xT

}
.

Utility Each individual i in network G has the utility Ui(G,X, εi). We assume it takes

the following form.

Assumption 2 The utility function takes the form

Ui(G,X, εi) =
1

n− 1

∑
j 6=i

Gij

(
u(Xi, Xj; β) +

1

n− 2

∑
k 6=i,j

Gjkγ1 − εij

)
+

1

(n− 1) (n− 2)

∑
j 6=i

∑
k 6=i,j

GijGikGjkGkjγ2 (1)

which is known up to θu = (β, γ1, γ2) ∈ Θu ⊂ Rdu. u is continuously differentiable in β and
uniformly bounded.

In the utility specification in (1), u(Xi, Xj; β) captures the utility from direct friend j.

An example of u(Xi, Xj; β) could be

u(Xi, Xj; β) = β0 + β′1Xi + β′2 |Xi −Xj|

where the second term is to capture the homophily effect. In addition to direct-friend effects,

the utility in (1) also allows for the effects from indirect friends. The γ1 term represents the

effect of friends of friends, and the γ2 term represents the effect of friends in common, both

of which are well documented in the social network literature (Jackson, 2008).

Strategies The strategies of the players can be modeled by extending the link announce-

ment game in Myerson (1991) to the case of incomplete information. Under incomplete

information, each individual i announces simultaneously a vector of links that he intends to

form given his information (X, εi), namely

Si(X, εi) = (Sij(X, εi))j 6=i ∈ Si = {0, 1}n−1

The strategy profile S = (Si)i∈N induces a network G (S). For directed networks, we have

Gij (S) = Sij for any i 6= j ∈ N .
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Equilibrium In the context of directed networks with incomplete information, a proper

equilibrium concept is Bayesian Nash equilibrium, which we will assume in this paper. A

directed network G ∈ G is Bayesian Nash equilibrium (BNE) if

Gi (X, εi) = arg max
G′i∈Gi

E [Ui(G
′
i, G−i, X, εi)|X, εi] , ∀i ∈ N

Note that Gi is a function of (X, εi) and G−i is a function of (X, ε−i) where ε−i = (εj)j 6=i.

Under Assumption 1, G−i is independent of εi. Hence, the expected utility of i conditional

on (X, εi) is given by

E [Ui(G,X, εi)|X, εi] = E [Ui(Gi, G−i, X, εi)|X, εi]
=

∑
g−i∈G−i

Ui(Gi, g−i, X, εi)P (G−i = g−i|X, εi)

=
∑

g−i∈G−i

Ui(Gi, g−i, X, εi)P (G−i = g−i|X)

The conditional choice probability of i for gi ∈ Gi is then

Pr (Gi = gi|X)

= Pr

∑
g−i

Ui(gi, g−i, X, εi) Pr (G−i = g−i|X) ≥ max
g′i

∑
g−i

Ui(g
′
i, g−i, X, εi) Pr (G−i = g−i|X)

∣∣∣∣∣∣X


(2)

Define

Pi (X) = {Pr (Gi = gi|X) ,∀gi ∈ Gi}
P−i (X) = {Pr (G−i = g−i|X) ,∀g−i ∈ G−i}

=

{∏
j 6=i

Pr (Gj = gj|X) ,∀gj ∈ Gj,∀j 6= i

}
P (X) = {Pr (Gi = gi|X) ,∀gi ∈ Gi, ∀i ∈ N}

The equations in (2) define a nonlinear system over P (X),

Pi (X) = Γi (X,P−i (X)) , ∀i ∈ N (3)

and a fixed point P (X) is a BNE.

In this paper, we will focus on BNE that are symmetric in agents’observables. We say
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a BNE is symmetric if for i and j with Xi = Xj, we have Pi (X) = Pj (X). In network data

where individuals do not have identities, it makes sense to consider only symmetric equilibria

because otherwise the equilibria and agents’choices may depend on how we label the indi-

viduals. More importantly, as we assume only one network is observed, the assumption of

symmetric equilibria will be crucial for valid estimation and inference. It can be shown that

there exists a symmetric BNE. We assume that the network observed in data is a symmetric

BNE.

Lemma 1 For any X, there exists a symmetric Bayesian Nash equilibrium P (X).

Proof. See the appendix.

3 Convergence of Games

In this section, we aim to show that the set of equilibria in the finite-player game will converge

to the set of equilibria in some limit game as n goes to infinity. This is crucial if we want

to apply a two-step procedure to estimate the parameter θ, where in the first step we are

supposed to estimate the conditional choice probabilities directly from data. Because the

equilibria in the finite-player game depend on the number of players n, if we only observe

one network, it is impossible to estimate the conditional choice probabilities consistently.

However, if the finite-player game converges to some limit game, for suffi ciently large n we

may approximate DGP well by the limit game, i.e., assuming the data are generated from

the limit game rather than the finite-player game. Since the conditional choice probabilities

in the limit no longer depend on n, by making use of the symmetry of equilibria we can

estimate the conditional choice probabilities consistently using only one observation of the

network. Once we have consistent estimates of the conditional choice probabilities in the

first step, we can derive valid estimates of the parameter θ.

3.1 The closed form of optimal choices

The diffi culty in analyzing the convergence of the conditional choice probabilities in the

finite-player game lies in the fact that the expected utility is nonlinear in Gi, which is a

binary-valued vector, so the optimal Gi may be solved only numerically. The insight of this

paper is to provide an approach to linearize the expected utility function so that the optimal

Gi can be solved analytically. To be specific, the expected utility of i given i’s information
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(X, εi) under Assumptions 1-2 is

E [Ui(G,X, εi)|X, εi] =
1

n− 1

∑
j 6=i

Gij

(
u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

E [Gjk|X] γ1 − εij

)

+
1

(n− 1) (n− 2)

∑
j 6=i

∑
k 6=i,j

GijGikE [Gjk|X]E [Gkj|X] γ2. (4)

By the symmetry of BNE, in a network with a given X any pair (i, j) with the same (Xi, Xj)

has the same choice probability E [Gij|X]. It is thus valid to denote

p (Xj, Xk;X) = E [Gjk|X] ,

a (Xj, Xk;X) = p (Xj, Xk;X) p (Xk, Xj;X) = E [Gjk|X]E [Gkj|X] .

Under the assumption that X has a finite support (Assumption 1(iii)), we may represent

all possible values of a (Xj, Xk) by a T × T matrix A

A =


a11 · · · a1T
...

. . .
...

aT1 · · · aTT

 =


a (x1, x1) · · · a

(
x1, xT

)
...

. . .
...

a
(
xT , x1

)
· · · a

(
xT , xT

)
 . (5)

Note that because we count j, k as a common pair of friends if Gjk = 1 and Gkj = 1,

the friends-in-common term had an undirected flavor, so A is symmetric. If we count j, k

as a common pair of friends if either Gjk = 1 or Gkj = 1, then GjkGkj is replaced by

Gjk+Gkj−GjkGkj and a (Xj, Xk) is replaced by p (Xj, Xk)+p (Xk, Xj)−p (Xj, Xk) p (Xk, Xj),

which is a symmetric function, so A is also symmetric. From linear algebra there exist T ×T
matrices Φ = (φ1, . . . , φT ) and Λ = diag (λ1, . . . , λT ) such that A = ΦΛΦ′, where λt are the

eigenvalues of A and φt are the eigenvectors that correspond to each λt for t = 1, . . . , T .

Using the eigenvalue decomposition of A and letting

Dt (Xi) = 1
{
Xi = xt

}
, t = 1, . . . , T,

D (Xi) = (D1 (Xi) , . . . , DT (Xi))
′ ,

we may transform the quadratic term in (4) into a form that involves only linear functions

of Gij.
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Lemma 2 Under Assumption 1(iii),

∑
j 6=i

∑
k 6=i,j

GijGika (Xj, Xk) =
∑
t

λt

(∑
j 6=i

GijD (Xj)
′ φt

)2
−
∑
j 6=i

Gija (Xj, Xj) .

Proof. See the appendix.
By Lemma 2 the expected utility in (4) can be written as

E [Ui(G,X, εi)|X, εi]

=
1

n− 1

∑
j 6=i

Gij

[
u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2 − εij

]

+
n− 1

n− 2

∑
t

λt

(
1

n− 1

∑
j 6=i

GijD (Xj)
′ φt

)2
γ2. (6)

Our next objective is to linearize the expected utility, i.e., make it linear in Gi, so that

the problem of maximizing E [Ui(G,X, εi)|X, εi] over Gi can be solved easily with a closed

solution. A crucial step in the linearization is to make use of the identity2(
1

n− 1

∑
j 6=i

GijD (Xj)
′ φt

)2
= max

ω̃t∈R

{
2

(
1

n− 1

∑
j 6=i

GijD (Xj)
′ φt

)
ω̃t − ω̃2t

}
, t = 1, . . . , T,

(7)

so that that the expected utility is equal to

E [Ui(G,X, εi)|X, εi]

=
1

n− 1

∑
j 6=i

Gij

[
u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2 − εij

]

+
n− 1

n− 2

∑
t

λt max
ω̃t∈R

{
2

(
1

n− 1

∑
j 6=i

GijD (Xj)
′ φt

)
ω̃t − ω̃2t

}
γ2 (8)

With the quadratic terms replaced with the maxima of linear functions, the expected util-

ity in (8) becomes linear in Gi. Therefore, if we can move the maximization over ω̃ =

(ω̃1, . . . , ω̃T )′ ∈ RT to the very beginning of the expected utility (the first equivalence in the
display below) and interchange the maximization over ω̃ with the maximization over Gi (the

second equivalence in the display below), the original problem of maximizing the expected

utility over Gi can be transformed to an equivalent problem of which the maximization over

2The identity is a special case of Legendre transform (Rockafellar, 1970). We are grateful to Terrence
Tao for suggesting the idea.
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Gi part is linear and thus simple to solve. The first equivalence is guaranteed by Assumption

3, and the second equivalence follows by Lemma 3. Moreover, the maximization over ω̃ is

equivalent to the maximization over ω = (ω1, . . . , ωT )′ = Φω̃ ∈ RT (the third equivalence in
the display) because A = ΦΛΦ′ and Φ−1 = Φ′. By the change of variables we can get around

the eigenvalues and eigenvectors in the objective function, which may be discontinuous in A.

max
Gi

E [Ui(G,X, εi)|X, εi]

⇔ max
Gi

max
ω̃

1

n− 1

∑
j 6=i

Gij

[
u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2 − εij

+
n− 1

n− 2
2γ2D (Xj)

′∑
t

λtφtω̃t

]
− n− 1

n− 2
γ2
∑
t

λtω̃
2
t

⇔ max
ω̃

max
Gi

1

n− 1

∑
j 6=i

Gij

[
u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2 − εij

+
n− 1

n− 2
2γ2D (Xj)

′ΦΛω̃

]
− n− 1

n− 2
γ2ω̃

′Λω̃

⇔ max
ω

max
Gi

1

n− 1

∑
j 6=i

Gij

[
u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2 − εij

+
n− 1

n− 2
2γ2D (Xj)

′Aω

]
− n− 1

n− 2
γ2ω

′Aω (9)

Assumption 3 (Positive externality from friends in common) (i) γ2 ≥ 0. (ii) There

is δ > 0 such that the eigenvalues of A (p) are nonnegative for any p in the δ-neighborhood

of the equilibrium p0 in the observed data.

Lemma 3 For any function f(x, y) : X × Y → R, f (x, y) < ∞ for all (x, y) ∈ X × Y, we
have

max
y∈Y

max
x∈X

f (x, y) = max
x∈X

max
y∈Y

f(x, y) (10)

This implies that if there is a unique (x∗, y∗) such that f (x∗, y∗) = maxy∈Y maxx∈X f (x, y),

then there is a unique (x̃∗, ỹ∗) such that f (x̃∗, ỹ∗) = maxx∈X maxy∈Y f(x, y). In particular,

(x̃∗, ỹ∗) = (x∗, y∗).

Proof. See the appendix.
The optimal choice of i for a given (X, εi), denoted by

Gn,i = (Gn,ij (Xi, Xj))j 6=i =
(
Gij

(
Xi, Xj;X−{i,j}, εi

))
j 6=i
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can be solved easily from the equivalent problem in (9) since the objective function of (9)

is linear in Gn,i. Furthermore, Lemma 3 ensures that the optimal Gn,i solved from the

equivalent problem is unique if the optimal Gn,i solved from the original problem is also

unique, which is true almost surely because of the assumption that εi has a continuous

distribution.

Theorem 1 Under Assumptions 1-3, the optimal choice of i is given by

Gn,ij (Xi, Xj) = 1

{
Vn (Xi, Xj) +

n− 1

n− 2
2γ2D (Xj)

′Aωn (Xi)− εij ≥ 0

}
, ∀j 6= i (11)

where

ωn (Xi) = ωn (Xi;X−i, εi)

is the optimal solution to

max
ω

1

n− 1

∑
j 6=i

[
Vn (Xi, Xj) +

n− 1

n− 2
2γ2D (Xj)

′Aω − εij
]
+

− n− 1

n− 2
γ2ω

′Aω (12)

with the notation [x]+ = max {x, 0} and

Vn (Xi, Xj) = Vn
(
Xi, Xj;X−{i,j}

)
= u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2

Furthermore, the optimal Gn,ij (Xi, Xj) and ωn (Xi) are unique almost surely.

3.2 Convergence of conditional choice probabilities

With the closed-form optimal choices, it is straightforward to derive the conditional proba-

bility that a pair forms a link. Given (xi, xj) ∈ X 2, the probability that pair i and j form
link ij is given by

Pn (xi, xj; p, θ) = Eεi (Gn,ij (xi, xj; εi)|xi, xj)

= Prεi

(
Vn (xi, xj) +

n− 1

n− 2
2γ2D (xj)

′Aωn (xi; εi)− εij ≥ 0

∣∣∣∣xi, xj) (13)

Note that the conditional choice probability is random even if εi is integrated out because

both Vn (xi, xj) = V
(
xi, xj;X−{i,j}

)
and ωn (xi; εi) = ω

(
xi;X−{i,j}, εi

)
depend on X−{i,j}

which is random. The dependence of Pn (xi, xj) on n makes it impossible to estimate

Pn (xi, xj), as needed in a two-step procedure, if we only assume a single observation of
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the network. However, if Pn (xi, xj) can be approximated suffi ciently well by some limit-

ing "conditional choice probability" P (xi, xj) that does not depend on n, we may be able

to estimate the limit P (xi, xj) with a single large observation of the network and use the

estimated P (xi, xj) as an approximation of Pn (xi, xj) for the estimation of the structural

parameters. To be specific, define the conditional probability

P (xi, xj; p, θ) = Prεij
(
V (xi, xj) + 2γ2D (xj)

′Aω∗ (xi)− εij ≥ 0
∣∣xi, xj) , (14)

where ω∗ (xi) is the optimal solution to

max
ω
EXj ,εij

[
V (xi, Xj) + 2γ2D (Xj)

′Aω − εij
]
+
− γ2ω′Aω (15)

and

V (xi, xj) = u(xi, xj) + EXk [p (xj, Xk)] γ1

The P (xi, xj) in (14) may be understood as the conditional choice probability in a "limiting

game" where each player chooses optimal links by making binary choices, i.e., Gij = 1

if V (xi, xj) + 2γ2D (xj)
′Aω∗ (xi) − εij ≥ 0 and 0 otherwise, with ω∗ (xi) controlling for

the interactions from i’s other links due to friends in common, and p controlling for the

interactions from other players, both of which are determined in equilibrium. Our goal

in this section is to prove that the conditional choice probability in the finite-player game

converges to the conditional choice probability in the limiting game uniformly as n increases

to infinity, namely,

sup
p,θ
|Pn (xi, xj; p, θ)− P (xi, xj; p, θ)|

p→ 0

as n→∞.

Assumption 4 (i) Normalize θ appropriately so that the density of ε, fε (ε), satisfies fε (ε) ≤
1 for any ε ∈ R. (ii) γ2 ∈

[
0, 1

2
− δ
]
for some δ > 0.

Proposition 1 Under Assumptions 1-4(assume γ2 6= 0), for any xi ∈ X, there is a unique
Aω∗ (xi) that solves the problem in (15).

Proof. See the appendix.

Remark 1 Note that ω∗ may not be unique if A is singular. Nevertheless, the indeterminacy
of ω∗ does not cause an identification problem because only Aω enters the conditional choice

probability Pn and P , and Proposition 1 ensures that there is a unique Aω∗ that solves (15).

Assumption 5 Θ is compact.

11



Lemma 4 Under Assumptions 1-5, for any xi ∈ X ,

sup
p,θ
|Aωn (xi; p, θ)− Aω∗ (xi; p, θ)|

p→ 0

Proof. See the appendix.

Theorem 2 Under Assumptions 1-5, for any (xi, xj) ∈ X 2,

sup
p,θ
|Pn (xi, xj; p, θ)− P (xi, xj; p, θ)|

p→ 0.

Proof. See the appendix.

4 Estimation

In this section, we discuss how to estimate parameter θ. The previous section says that the

conditional choice probabilities in finite games can be well approximated by the conditional

choice probabilities in the limiting game so long as the number of agents is large. While the

true DGP is a finite game, that is, we sample n individuals at random from the population

and let these n individuals play the formation game with n players, the convergence of

finite games implies that we can approximate the true DGP by the limiting CCP. Such an

approximation serves two roles in the estimation. First, the limiting CCP does not depend

on n so that the model we need to estimate would not change with n. This is crucial if we

assume only one network is observed in the data. Second, players in the limiting game make

link decisions in the myopic way: a player decides to form a link as in a binary choice model,

that is, he forms the link if the latent utility from the link is nonnegative, where the latent

utility equals the expected marginal utility from the link plus a function of additional control

variables ω (x; p, θ) that take care of the interdependence between links of the player. This

implies that links in the limiting game are independent and identically distributed. While

links in the observed networks may be correlated, under the approximation we can view them

as a i.i.d. sample generated from the distribution determined by the limiting CCP and the

relative frequency of links for each given type of players could provide consistent estimates

for the equilibrium p.

Our approach only requires one single large network. If more than one network is observed

in the data, we can proceed network by network. That is, we treat links in each network

as a sample generated from the limiting CCP P (xi, xj; p, θ) with p the equilibrium in that

network and obtain from each network a set of restrictions for estimation.

12



We propose a two-step procedure to estimate θ. In the first stage, we estimate the

equilibrium probabilities p = {p (xs, xt)}Ts,t=1 by counting the relative frequency that two
players with the observed characteristics (xs, xt) form a link. That is, we estimate p (xs, xt)

by

p̂n
(
xs, xt

)
=

∑n
i=1

∑
j>i 1 {Gij = 1, Xi = xs, Xj = xt}∑n

i=1

∑
j>i 1 {Xi = xs, Xj = xt}

After we get the first-stage estimate p̂n, we estimate parameter θ from the restrictions that

are derived from the equilibrium condition in the limiting game, with p replaced with the

estimated p̂n. We can estimate θ by GMM or MLE as in the standard literature on two-step

estimation. Note that while the limiting game may have more than one equilibrium, we do

not need to impose any restrictions on equilibrium selection because the equilibrium p is

directly estimated from the data.

Example 1 We can estimate θ by MLE. Let P (Xi, Xj; p, θ) be the limiting CCP. Because

the limiting game is a good approximation of the true DGP, we may properly specify the log

likelihood of the data as

lnL (θ, p) =
n∑
i=1

∑
j>i

Gij lnP (Xi, Xj; p, θ) + (1−Gij) ln (1− P (Xi, Xj; p, θ))

The MLE estimate of θ is the maximizer of the log likelihood with p replaced by the estimate

p̂n

θ̂n = arg max
θ

lnL (θ, p̂n)

Example 2 If we estimate θ by GMM, the equilibrium condition in the limiting game gives

the conditional moment restrictions

m0 (θ, p;x, x′) = E [Gij − P (x, x′; p, θ)|x, x′] = 0, ∀ (x, x′) ∈ X 2

These restrictions should hold approximately in finite games with large n since the CCP in

finite games converges to the limiting CCP as n increases to infinity. We estimate θ from

the sample analogue of these moment restrictions with p replaced by the estimate p̂n

mn (θ, p̂n;x, x′) =
1(
n
2

) n∑
i=1

∑
j>i

(Gij − P (x, x′; p̂n, θ)) 1 {Xi = x,Xj = x′} , ∀ (x, x′) ∈ X 2

Stack the T 2 sample moments into a vector

mn (θ, p̂n) =
[
mn

(
θ, p̂n;x1, x1

)
,mn

(
θ, p̂n;x1, x2

)
, . . . ,mn

(
θ, p̂n;xT , xT

)]′
13



The GMM estimate θ̂n minimizes the criterion function

θ̂n = arg min
θ
mn (θ, p̂n)′ V (θ)mn (θ, p̂n)

with V (θ) a positive definite weighting matrix.

5 Undirected Networks

In this section we look at undirected networks. We show that, with modifications in the CCP

and limiting game, the idea in Section 3 would work in undirected networks. Let Sij indicate

a directed link and Gij = SijSji an undirected link. We consider an undirected counterpart

of the utility in (1). It depends on the formed links G rather than the proposals.

Ui (G,X, εi) =
1

n− 1

∑
j 6=i

Gij

(
u (Xi, Xj) +

1

n− 2

∑
k 6=i,j

Gjkγ1 − εij

)

+
1

(n− 1) (n− 2)

∑
j 6=i

∑
k 6=i,j

GijGikGjkγ2

=
1

n− 1

∑
j 6=i

SijSji

(
u (Xi, Xj) +

1

n− 2

∑
k 6=i,j

SjkSkjγ1 − εij

)

+
1

(n− 1) (n− 2)

∑
j 6=i

∑
k 6=i,j

SijSjiSikSkiSjkSkjγ2

Assume Bayesian Nash equilibrium as before. We say an undirected network G is a Bayesian

Nash Equilibrium if it is induced by a Bayesian Nash equilibrium strategy profile {Si(X, εi)}i∈N ,
i.e.,

Si (X, εi) = arg max
S′i∈Si

E [Ui (G (S ′i, S−i) , X, εi))|X, εi] , ∀i ∈ N

Note that the choice probability in (2) still applies if we replace G by S and g by s. We

define Pi(X) = Pr(Si = si|X). Then (3) still defines the equilibrium.

Remark 2 A potential concern with Nash is that in undirected networks players may co-

ordinate. This is reasonable under complete information, where pairwise stability (Jackson

and Wolinsky (1996)) and Nash equilibrium are nonnested and neither of them implies the

other. However, under incomplete information players won’t be able to coordinate even in

undirected networks; because i does not observe εji, he cannot predict what j proposes and

coordinate on that. In fact, if we define a Bayesian version of the pairwise stability, that is,

14



a network G is Bayesian pairwise stable if

Gij = 1⇔ ∆ijE [Ui(G,X, εi)|X, εi] ≥ 0 & ∆jiE [Uj(G,X, εj)|X, εj] ≥ 0, ∀i 6= j

where ∆ijE [Ui(G,X, εi)|X, εi] is the expected marginal utility if i proposes the link with j,

∆ijE [Ui(G,X, εi)|X, εi] = E [Ui(G (Sij = 1, Si−ij, S−i) , X, εi)|X, εi]
−E [Ui(G (Sij = 0, Si−ij, S−i) , X, εi)|X, εi]

and similar for ∆jiE [Uj(G,X, εj)|X, εj], then any undirected network that is Bayesian Nash
must also be Bayesian pairwise stable. This is because for a Bayesian Nash G, Gij = 1 if

and only if Sij = Sji = 1 are optimal, so the expected marginal utility from the link must be

nonnegative for both i and j. It is thus enough to consider Bayesian Nash equilibrium.

Define the probability i proposes to link to j by p(Xi, Xj) and the probability i proposes

to link to both j and k by q(Xi, Xj, Xk)

p(Xi, Xj) = Pr(Sij = 1|X)

q(Xi, Xj, Xk) = Pr(Sij = 1, Sik = 1|X)

The expected utility of i is given by

E [Ui (G,X, εi)|X, εi]

=
1

n− 1

∑
j 6=i

Sij

(
E [Sji|X] (u (Xi, Xj)− εij) +

1

n− 2

∑
k 6=i,j

E [SjiSjkSkj|X] γ1

)

+
1

(n− 1) (n− 2)

∑
j 6=i

∑
k 6=i,j

SijSikE [SjiSjkSkiSkj|X] γ2

=
1

n− 1

∑
j 6=i

Sij

(
p(Xj, Xi) (u (Xi, Xj)− εij) +

1

n− 2

∑
k 6=i,j

q(Xj, Xi, Xk)p(Xk, Xj)γ1

)

+
1

(n− 1) (n− 2)

∑
j 6=i

∑
k 6=i,j

SijSikq(Xj, Xi, Xk)q(Xk, Xi, Xj)γ2

It takes the same forms as in the directed case (4), with a (Xj, Xk) and A replaced by

a (Xi, Xj, Xk) and A (Xi) defined by

a (Xi, Xj, Xk) = q(Xj, Xi, Xk)q(Xk, Xi, Xj)

15



and

A (Xi) =


a (Xi, x

1, x1) · · · a
(
Xi, x

1, xT
)

...
. . .

...

a
(
Xi, x

T , x1
)
· · · a

(
Xi, x

T , xT
)


More important, like in the directed case, A (Xi) is also a symmetric matrix, so the argument

in Section 3.1 still applies if A (Xi) satisfies Assumption 3 for any Xi ∈ X . Theorem 1 holds
with Gn,ij replaced by Sn,ij and slight modifications of the functions.

Corollary 1 Under Assumptions 1-3 (with A replaced by A (Xi)), the optimal choice of i is

given by

Sn,ij (Xi, Xj) = 1

{
Vn (Xi, Xj) +

n− 1

n− 2
2γ2D (Xj)

′A (Xi)ωn (Xi)− p(Xj, Xi)εij ≥ 0

}
, ∀j 6= i

(16)

where

ωn (Xi) = ωn (Xi;X−i, εi)

is the optimal solution to

max
ω

1

n− 1

∑
j 6=i

[
Vn (Xi, Xj) +

n− 1

n− 2
2γ2D (Xj)

′A (Xi)ω − p(Xj, Xi)εij

]
+

−n− 1

n− 2
γ2ω

′A (Xi)ω

(17)

with

Vn (Xi, Xj) = Vn
(
Xi, Xj;X−{i,j}

)
= p(Xj, Xi)u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

q(Xj, Xi, Xk)p (Xk, Xj) γ1

− 1

n− 2
a (Xi, Xj, Xj) γ2

Furthermore, the optimal Gn,ij (Xi, Xj) and ωn (Xi) are unique almost surely.

The conditional probabilities of i proposing one link and two links are given by

Pn(xi, xj; p, q, θ) = Eεi(Sn,ij (xi, xj; εi) |xi, xj)

= Prεi(Vn (xi, xj) +
n− 1

n− 2
2γ2D (xj)

′A (xi)ωn (xi; εi)− p(xj, xi)εij ≥ 0|xi, xj)

16



and

Qn(xi, xj, xk; p, q, θ) = Eεi (Sn,ij (xi, xj; εi)Sn,ik (xi, xk; εi)|xi, xj, xk)

= Prεi

(
Vn (xi, xj) +

n− 1

n− 2
2γ2D (xj)

′A (xi)ωn (xi; εi)− p(xj, xi)εij ≥ 0 &

Vn (xi, xk) +
n− 1

n− 2
2γ2D (xk)

′A (xi)ωn (xi; εi)− p(xk, xi)εik ≥ 0

∣∣∣∣ xi, xj, xk)
They depend on ωn in the way similar to choice probability in the directed case. We expect

them to converge to the limiting probabilities

P (xi, xj; p, q, θ) = Prεij(V (xi, xj) + 2γ2D (xj)
′A (xi)ω

∗ (xi)− p(xj, xi)εij ≥ 0|xi, xj)

and

Q(xi, xj, xk; p, q, θ) = P (xi, xj; p, q, θ) · P (xi, xk; p, q, θ)

= Prεij
(
V (xi, xj) + 2γ2D (xj)

′A (xi)ω
∗ (xi)− p(xj, xi)εij ≥ 0

∣∣xi, xj, xk)
Prεik

(
V (xi, xk) + 2γ2D (xk)

′A (xi)ω
∗ (xi)− p(xk, xi)εik ≥ 0

∣∣xi, xj, xk)
where ω∗ (xi) is the optimal solution to

max
ω
EXj ,εij

[
V (xi, Xj) + 2γ2D (Xj)

′A (xi)ω − p(Xj, xi)εij
]
+
− γ2ω′A (xi)ω

and

V (xi, xj) = p(xj, xi)u(xi, xj) + EXkq(xj, xi, Xk)p (Xk, xj) γ1

If the assumptions required in Theorem 2 hold in the undirected case, we can show similarly

that

sup
p,q,θ
|Pn(xi, xj; p, q, θ)− P (xi, xj; p, q, θ)| = op (1)

sup
p,q,θ
|Qn(xi, xj; p, q, θ)−Q(xi, xj; p, q, θ)| = op (1)

5.1 Estimation

For finite n the BNE choice probabilities are such that

Pr(Sij = 1, Sik = 1|X) 6= Pr(Sij = 1|X) Pr(Sik = 1|X)
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even though εij and εik are independent. The dependence between the choices is through ω

that depends for finite n on εi. However if n → ∞ then Sij and Sik are independent. So if

we consider the estimation we can assume that

Pr(Sij = 1, Sik = 1|X) = Pr(Sij = 1|X) Pr(Sik = 1|X)

This simplifies the estimation problem. Note that in the limit, because

q(xj, xi, xk) = E[SjiSjk|X]

we have

q(xj, xi, xk) = p(xj, xi)p(xj, xk)

so that

a(xi, xj, xk) = p(xj, xi)p(xk, xi)p(xj, xk)p(xk, xj)

= p(xj, xi)p(xk, xi)r(xj, xk)

with r(xj, xk) the probability of an undirected link between j and k that can be estimated

from the data.

In the limit the BNE structural choice probabilities under Assumptions 1-3 are myopic

with choice probability (choice is that i wants a link with j, i.e., Sij = 1) if n is large

P (xi, xj; p, θ) = Fε

(
u(xi, xj) + γ1EXk [r(xj, Xk)] + 2γ2D(xj)

′ A(xi)

p(xj, xi)
ω∗(xi)

)
(18)

with ω∗(xi) the optimal solution to

EXj ,εijp(Xj, xi)

[
u(xi, Xj) + γ1EXk(r(Xj, Xk)) + 2γ2D(Xj)

′ A(xi)

p(Xj, xi)
ω − εij

]
+

− γ2ω′A(xi)ω

Note that r(xj, xk) can be directly estimated from data on undirected links. We also have

r(xi, xj) = p(xi, xj)p(xj, xi)

Since the left-hand side can be estimated, we have 1
2
T (T + 1) equations in T 2 unknowns.

The BNE structural probability of an undirected links is

R(xi, xj; p, θ) = P (xi, xj; p, θ)P (xj, xi; p, θ)

18



So the restrictions we have is that for all i < j

r(xi, xj) = P (xi, xj; p, θ)P (xj, xi; p, θ)

r(xi, xj) = p(xi, xj)p(xj, xi) (19)

With T types these are T 2 +T restrictions on T 2 + dim(θ) unknowns, so the order condition

for identification is satisfied if T ≥ dim (θ). We may treat p as an additional parameter and

estimate θ and p from (19) using one-step GMM.

6 Continuous X

In this section we consider the case when X has a continuous distribution. We show that

for continuous X the analysis in Section 3 can still apply if we rewrite it in the language of

infinitely dimensional functional spaces. We start with directed networks and the analysis of

undirected networks is similar. Let L2 (X ) =
{
h :
∫
X h

2 (x) dx <∞
}
be the set of functions

that are square integrable on X . For any functions h1, h2 ∈ L2 (X ), define the inner product

〈h1, h2〉 =
∫
X h1 (x)h2 (x) dx. Define the operator A : L2 (X )→ L2 (X ) by

(Ah) (y) =

∫
X
h (x) a (x, y) dx.

Note that because we count j, k as a common pair of friends if Gjk = Gkj = 1, so a (Xj, Xk) =

a (Xk, Xj).3 Symmetry of a implies that for any h1, h2 ∈ L2 (X ),

〈Ah1, h2〉 =

∫
X 2
h1 (x)h2 (y) a (x, y) dxdy

=

∫
X 2
h1 (x)h2 (y) a (y, x) dxdy

= 〈h1, Ah2〉 ,

so A is a self-adjoint operator. Since A is real and self adjoint, it has real eigenvalues and

eigenvectors {λt, φt, t = 1, 2, . . .}. These are the solutions to Aφt = λtφt, t = 1, 2, . . ., and

are analogous to the eigenvalues and eigenvectors of a real symmetric matrix (the case if X

has a finite discrete support). Like in Lemma 2, we can transform the quadratic term in (4)

into a canonical form that involves only squares of linear functions of Gij.

3If we count j, k as a common pair of friends if either Gjk = 1 or Gkj = 1, then GjkGkj is replaced by
Gjk +Gkj −GjkGkj and a (Xj , Xk) is replaced by p (Xj , Xk) + p (Xk, Xj)− p (Xj , Xk) p (Xk, Xj), which is
also symmetric in Xj and Xk.
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Lemma 5

∑
j 6=i

∑
k 6=i,j

GijGika (Xj, Xk) =

∞∑
t=1

λt

(∑
j 6=i

Gijφt (Xj)

)2
−
∑
j 6=i

Gija (Xj, Xj) .

Proof. See the appendix.
Rewriting the double sum as in the lemma and applying Legendre transform again to the

square terms(
1

n− 1

∑
j 6=i

Gijφt (Xj)

)2
= max

ω̃t∈R

{
2

(
1

n− 1

∑
j 6=i

Gijφt (Xj)

)
ω̃t − ω̃2t

}
, t = 1, 2, . . .

we obtain the expected utility

E [Ui(G,X, εi)|X, εi]

=
1

n− 1

∑
j 6=i

Gij

[
u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2 − εij

]

+
n− 1

n− 2

∞∑
t=1

λt max
ω̃t∈R

{
2

(
1

n− 1

∑
j 6=i

Gijφt (Xj)

)
ω̃t − ω̃2t

}
γ2

As in the discrete case, under Assumption 3 we can interchange the maximization over ω̃

with the maximization over Gi. Moreover, we can define ω (x) =
∑∞

t=1 φt (x) ω̃t, so ω̃t =

〈ω, φt〉, t = 1, 2, . . ., and maximizing over ω̃ is then equivalent to maximizing over ω as

shown below because
∑∞

t=1 λtφt (Xj) ω̃t =
∑∞

t=1 (Aφt) (Xj) ω̃t = (Aω) (Xj), and
∑∞

t=1 λtω̃
2
t =

〈
∑∞

t=1 φtω̃t,
∑∞

t=1 λtφtω̃t〉 = 〈ω,Aω〉.

max
Gi

E [Ui(G,X, εi)|X, εi]

⇔ max
ω̃∈RN

max
Gi

1

n− 1

∑
j 6=i

Gij

[
u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2 − εij

+
n− 1

n− 2
2γ2

∞∑
t=1

λtφt (Xj) ω̃t

]
− n− 1

n− 2
γ2

∞∑
t=1

λtω̃
2
t

⇔ max
ω∈L2(X )

max
Gi

1

n− 1

∑
j 6=i

Gij

[
u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2 − εij

+
n− 1

n− 2
2γ2 (Aω) (Xj)

]
− n− 1

n− 2
γ2 〈ω,Aω〉
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The optimal choice of an individual has a simple closed form that is similar to that in the

discrete case.

Corollary 2 Under Assumptions 1-3, the optimal choice of i is given by

Gn,ij (Xi, Xj) = 1

{
Vn (Xi, Xj) +

n− 1

n− 2
2γ2 (Aωn (Xi)) (Xj)− εij ≥ 0

}
, ∀j 6= i (20)

where

(ωn (Xi)) (x) = (ωn (Xi;X−i, εi)) (x) ∈ L2 (X )

is the optimal solution to

max
ω

1

n− 1

∑
j 6=i

[
Vn (Xi, Xj) +

n− 1

n− 2
2γ2 (Aω) (Xj)− εij

]
+

− n− 1

n− 2
γ2 〈ω,Aω〉 (21)

and

Vn (Xi, Xj) = Vn
(
Xi, Xj;X−{i,j}

)
= u(Xi, Xj) +

1

n− 2

∑
k 6=i,j

p (Xj, Xk) γ1 −
1

n− 2
a (Xj, Xj) γ2

Furthermore, the optimal Gn,ij (Xi, Xj) and (ωn (Xi)) (x) are unique almost surely.

7 Simulation

To be completed.

8 Conclusion

To be completed

9 Appendix: Proofs

Proof of Lemma 1. Define the set of symmetric P (X)

Ps (X) =
{
P (X) ∈ [0, 1]n2

n−1
: Pi (X) = Pj (X) if Xi = Xj

}
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It is clear that Ps (X) is a convex, closed and bounded subset of [0, 1]n2
n−1
. Equations in (3)

forms a mapping from Ps (X) to Ps (X), because if P (X) ∈ Ps (X), then Γi (X,P−i (X)) =

Γj (X,P−j (X)), so Γ (X,P−i (X)) is also symmetric. The mapping is continuous in P (X)

because the expected utilities are continuous in P−i (X) and εi has a continuous distribution

under Assumption 1. By Brouwer’s fixed point theorem there is a fixed point.

Proof of Lemma 2. For simplicity of notation write Dit = Dt (Xi) and Di = D (Xi).∑
j 6=i

∑
k 6=i,j

GijGika (Xj, Xk) =
∑
j 6=i

∑
k 6=i

GijGika (Xj, Xk)−
∑
j 6=i

Gija (Xj, Xj)

=
∑
j 6=i

∑
k 6=i

GijGik

∑
s

∑
t

astDjsDkt −
∑
j 6=i

Gija (Xj, Xj)

=
∑
s

∑
t

ast
∑
j 6=i

GijDjs

∑
k 6=i

GikDkt −
∑
j 6=i

Gija (Xj, Xj)

=

(∑
j 6=i

GijD
′
j

)
A

(∑
j 6=i

GijDj

)
−
∑
j 6=i

Gija (Xj, Xj)

By eigenvalue decomposition of A,(∑
j 6=i

GijD
′
j

)
A

(∑
j 6=i

GijDj

)
=

(∑
j 6=i

GijD
′
j

)
ΦΛΦ′

(∑
j 6=i

GijDj

)

=

(∑
j 6=i

GijD
′
jΦ

)
Λ

(∑
j 6=i

GijΦ
′Dj

)

=
∑
t

λt

(∑
j 6=i

GijD
′
jφt

)2

Therefore,

∑
j 6=i

∑
k 6=i,j

GijGika (Xj, Xk) =
∑
t

λt

(∑
j 6=i

GijD
′
jφt

)2
−
∑
j 6=i

Gija (Xj, Xj)

Proof of Lemma 3. Note that

max
x∈X

f (x, y) ≥ f (x, y) , ∀ (x, y) ∈ X × Y

⇒ max
y∈Y

max
x∈X

f (x, y) ≥ max
y∈Y

f (x, y) , ∀x ∈ X

⇒ max
y∈Y

max
x∈X

f (x, y) ≥ max
x∈X

max
y∈Y

f (x, y)

22



Similarly,

max
x∈X

max
y∈Y

f (x, y) ≥ max
y∈Y

max
x∈X

f (x, y)

Hence (10) is proved. From (10), any (x̃∗, ỹ∗) that maximizes the RHS of (10) should satisfy

f (x̃∗, ỹ∗) = max
x∈X

max
y∈Y

f(x, y) = max
y∈Y

max
x∈X

f (x, y) = f (x∗, y∗)

By uniqueness of (x∗, y∗), we have (x̃∗, ỹ∗) = (x∗, y∗).

Proof of Proposition 1. Let fX denote the density of Xi.

EXj ,εij
[
V (xi, Xj) + 2γ2D (Xj)

′Aω − εij
]
+

=
T∑
t=1

Eεij
[
V
(
xi, x

t
)

+ 2γ2a
′
tω − εij

]
+
fX
(
xt
)

where a′t is the t-th row of A. Note that for any u ∈ R, Eεij [u− εij]+ =
∫ u
−∞(u− ε)fε (ε) dε,

soς
∂

∂u
Eεij [u− εij]+ =

∫ u

−∞
fε (ε) dε = Fε (u)

Hence, the first order condition of (15) with respect to ω = (ω1, . . . , ωT )′ is given by

0 =
T∑
t=1

Fε
(
V
(
xi, x

t
)

+ 2γ2a
′
tω
)
fX
(
xt
)

2γ2at − 2γ2Aω

=
T∑
t=1

Fε
(
V
(
xi, x

t
)

+ 2γ2a
′
tω
)
fX
(
xt
)
at − Aω

Let y = Aω and

Ψ(y) =
T∑
t=1

Fε
(
V
(
xi, x

t
)

+ 2γ2yt
)
fX
(
xt
)
at

We want to show that Ψ(y) is a contraction mapping from RT to RT , i.e., there is κ ∈ [0, 1)

such that ‖Ψ (y + h)−Ψ (y)‖ ≤ κ ‖h‖ for any y, h ∈ RT . By mean value theorem,Ψ (y + h)−
Ψ (y) = ∇Ψ (ỹ) · y, with ỹ = y + ξh for some ξ ∈ [0, 1], where

∇Ψ (ỹ) = 2γ2


a11f

1
ε (ỹ) fX (x1) · · · a1Tf

T
ε (ỹ) fX

(
xT
)

...
. . .

...

aT1f
1
ε (ỹ) fX (x1) · · · aTTf

T
ε (ỹ) fX

(
xT
)


with notation f tε (ỹ) = fε (V (xi, x
t) + 2γ2ỹt). Consider the maximum row sum matrix norm
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of ∇Ψ (ỹ)

‖∇Ψ (ỹ)‖∞ = 2γ2 max
1≤s≤T

T∑
t=1

∣∣astf tε (ỹ) fX
(
xt
)∣∣ ≤ 2γ2 max

1≤s≤T

T∑
t=1

fX
(
xt
)

= 2γ2 < 1

The second inequality is because ast ∈ [0, 1] and f tε (ỹ) ∈ [0, 1] for any 1 ≤ s, t ≤ T . Hence,

the matrix norm ‖∇Ψ (ỹ)‖2 induced by the Euclidean norm on RT , which equals the largest
singular value of ∇Ψ (ỹ), satisfies

‖∇Ψ (ỹ)‖2 ≤ ‖∇Ψ (ỹ)‖∞ < 1

We conclude that Ψ(y) is a contraction mapping of y, so by contraction mapping theorem

there is a unique y∗ ∈ RT such that
Ψ(y∗) = y∗

or equivalently, there is a unique Aω∗ = y∗ that solves the first order condition. Furthermore,

if ω∗ 6= ω̃∗ satisfies Aω∗ = Aω̃∗, we have (ω∗ + ω̃∗)′A (ω∗ − ω̃∗) = 0, so ω∗′Aω∗ = ω̃∗′Aω̃∗.

Hence, there is a unique Aω∗ that achieves the maximum of problem (15).

Proof of Lemma 4. Let

Πn (xi, ω; p, θ) =
1

n− 1

∑
j 6=i

[
Vn (xi, Xj) +

n− 1

n− 2
2γ2D (Xj)

′Aω − εij
]
+

− γ2ω′Aω

Π (xi, ω; p, θ) = EXj ,εij
[
V (xi, Xj) + 2γ2D (Xj)

′Aω − εij
]
+
− γ2ω′Aω

Note that by Proposition 1 for any (p, θ) that satisfies the assumptions there is a unique

Aω∗ (p, θ). Because Π (xi, ω; p, θ) is continuous in (p, θ), the unique Aω∗ (p, θ) must also be

continuous in (p, θ) and thus bounded since Θ and P = [0, 1]T are compact. Hence we

can assume without loss of generality that ω is in a compact set Ω. Moreover, the unique

maximizer Aω∗ (p, θ) of continuous function Π (xi, ω; p, θ) over the compact set Ω must also

be well separated. If we can further show that

sup
ω,p,θ
|Πn (xi, ω; p, θ)− Π (xi, ω; p, θ)| = op(1) (22)

then it follows that supp,θ Πn (xi, ωn; p, θ) ≥ supp,θ Πn (xi, ω
∗; p, θ) ≥ supp,θ Π (xi, ω

∗; p, θ) −
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op(1), whence,

sup
p,θ

Π (xi, ω
∗; p, θ)− sup

p,θ
Π (xi, ωn; p, θ) ≤ sup

p,θ
Πn (xi, ωn; p, θ)− sup

p,θ
Π (xi, ωn; p, θ) + op (1)

≤ sup
ω,p,θ
|Πn (x, ω; p, θ)− Π (x, ω; p, θ)|+ op (1) = op (1) .

Well-separateness of Aω∗ (p, θ) implies that for any ε > 0, there is η > 0 such that, for any

(p, θ), Π (x, ω; p, θ) < Π (x, ω∗; p, θ)− η for every ω with ‖Aω − Aω∗ (p, θ)‖ ≥ ε. Therefore,

Pr

(
sup
p,θ
‖Aωn (p, θ)− Aω∗ (p, θ)‖ ≥ ε

)
≤ Pr

(
sup
p,θ

[Π (x, ωn; p, θ)− Π (x, ω∗; p, θ)] < −η
)

≤ Pr

(
sup
p,θ

Π (x, ωn; p, θ)− sup
p,θ

Π (x, ω∗; p, θ) < −η
)

→ 0

in view of the preceding display and we are done.

Next we prove (22). Let

Mn (xi, Xj, εij;ω, p, θ) = Vn (xi, Xj) +
n− 1

n− 2
2γ2D (Xj)

′Aω

M (xi, Xj, εij;ω, p, θ) = V (xi, Xj) + 2γ2D (Xj)
′Aω

The left hand side of (22) equals

sup
ω,p,θ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[Mn (xi, Xj;ω, p, θ)− εij]+ − EXj ,εij [M (xi, Xj;ω, p, θ)− εij]+

∣∣∣∣∣
≤ sup

ω,p,θ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[Mn (xi, Xj;ω, p, θ)− εij]+ − [M (xi, Xj;ω, p, θ)− εij]+

∣∣∣∣∣
+ sup

ω,p,θ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[M (xi, Xj;ω, p, θ)− εij]+ − EXj ,εij [M (xi, Xj;ω, p, θ)− εij]+

∣∣∣∣∣
For the second term in the last display, because

[M (xi, Xj;ω, p, θ)− εij]+ =
[
u(xi, Xj) + EXkp (Xj, Xk) γ1 + 2γ2D (Xj)

′Aω − εij
]
+

≤
[

sup
ω,p,θ

(
u(xi, Xj) + EXkp (Xj, Xk) γ1 + 2γ2D (Xj)

′Aω
)
− εij

]
+

which is absolute integrable, and [M (xi, Xj;ω, p, θ)− εij]+ is continous in (ω, p, θ), uniform
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law of large numbers holds, i.e,

sup
ω,p,θ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[M (xi, Xj;ω, p, θ)− εij]+ − EXj ,εij [M (xi, Xj;ω, p, θ)− εij]+

∣∣∣∣∣ = op (1)

As for the first term, because
∣∣[x]+ − [y]+

∣∣ ≤ |x− y|, we have
sup
ω,p,θ

∣∣∣∣∣ 1

n− 1

∑
j 6=i

[Mn (xi, Xj;ω, p, θ)− εij]+ − [M (xi, Xj;ω, p, θ)− εij]+

∣∣∣∣∣
≤ sup

ω,p,θ

1

n− 1

∑
j 6=i

|Mn (xi, Xj;ω, p, θ)−M (xi, Xj;ω, p, θ)|

≤ sup
ω,p,θ

1

(n− 1) (n− 2)

∑
j 6=i

∣∣∣∣∣∑
k 6=i,j

p (Xj, Xk) γ1 − EXk [p (Xj, Xk)] γ1

∣∣∣∣∣
+ sup

ω,p,θ

1

(n− 1) (n− 2)

∑
j 6=i

∣∣2D (Xj)
′Aωγ2 − a (Xj, Xj) γ2

∣∣
where the last inequality follows from the definition of Mn and M and triangular inequality.

Uniform law of large numbers is satisfied for the second term in the last display, so

sup
ω,p,θ

1

(n− 1) (n− 2)

∑
j 6=i

∣∣2D (Xj)
′Aωγ2 − a (Xj, Xj) γ2

∣∣ ≤ O

(
1

n

)
+ op (1) = op (1)

It suffi ces if

sup
ω,p,θ

1

(n− 1) (n− 2)

∑
j 6=i

∣∣∣∣∣∑
k 6=i,j

p (Xj, Xk) γ1 − EXk [p (Xj, Xk)] γ1

∣∣∣∣∣ = op (1) (23)

Let

h (Xj, Xk; p, θ) = p (Xj, Xk) γ1 − EXk [p (Xj, Xk)] γ1
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By Cauchy-Schwarz inequality,(
1

(n− 1) (n− 2)

∑
j 6=i

∣∣∣∣∣∑
k 6=i,j

h (Xj, Xk; p, θ)

∣∣∣∣∣
)2

≤ 1

(n− 1) (n− 2)2

∑
j 6=i

(∑
k 6=i,j

h (Xj, Xk; p, θ)

)2
=

1

(n− 1) (n− 2)2

∑
j 6=i

∑
k 6=i,j

h (Xj, Xk; p, θ)
2

+
1

(n− 1) (n− 2)2

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

h (Xj, Xk; p, θ)h (Xj, Xl; p, θ)

The two terms in the last display are U-processes. For each of them, we calculate the

Hoeffding decomposition and apply the results in Sherman (1994) for degenerate U-processes.

It is not diffi cult to show that

sup
p,θ

1

(n− 1) (n− 2)

∑
j 6=i

∑
k 6=i,j

h (Xj, Xk; p, θ)
2 − Eh (Xj, Xk; p, θ)

2 = Op

(
1√
n

)

which implies

sup
p,θ

1

(n− 1) (n− 2)2

∑
j 6=i

∑
k 6=i,j

h (Xj, Xk; p, θ)
2 ≤ sup

p,θ

1

n− 2
Eh (Xj, Xk; p, θ)

2+Op

(
1

n
√
n

)
= Op

(
1

n

)

and

sup
p,θ

1

(n− 1) (n− 2)2

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

h (Xj, Xk; p, θ)h (Xj, Xl; p, θ) = Op

(
1

n

)
where the rate of convergence follows because its first-order projections (i.e., projection onto

{Xj}) are identically zero. Combining the two convergence results yields

sup
p,θ

1

(n− 1) (n− 2)2

∑
j 6=i

(∑
k 6=i,j

h (Xj, Xk; p, θ)

)2
= Op

(
1

n

)

which implies (23) and thus (22). The proof is complete.

Denote

Mn (xi, xj, ω; p, θ) = Vn (xi, xj) +
n− 1

n− 2
2γ2D (xj)

′Aω

M (xi, xj, ω; p, θ) = V (xi, xj) + 2γ2D (xj)
′Aω
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From the definition of the Pn and P

sup
p,θ
|Pn (xi, xj; p, θ)− P (xi, xj; p, θ)|

≤ sup
p,θ

∫
|1 {Mn (xi, xj, ωn (xi; εi) ; p, θ) ≥ εij} − 1 {M (xi, xj, ω

∗ (xi) ; p, θ) ≥ εij}| dFεi (εi)

≤ sup
p,θ

∫
[1 {M (xi, xj, ω

∗ (xi) ; p, θ) < εij ≤Mn (xi, xj, ωn (xi; εi) ; p, θ)}

+1 {Mn (xi, xj, ωn (xi; εi) ; p, θ) < εij ≤M (xi, xj, ω
∗ (xi) ; p, θ)}] dFεi (εi)

Uniform law of large numbers applied to Vn (xi, xj) and Lemma 4 imply that there is cn =

op (1) independent of εi such that

sup
p,θ

∣∣Mn (xi, xj, ωn (xi; εi) ; p, θ)−M
(
xs, xt, ω∗ (xi) ; p, θ

)∣∣ ≤ cn

Thus the preceding display satisfies

≤ sup
p,θ

∫
[1 {M (xi, xj, ω

∗ (xi) ; p, θ) < εij ≤M (xi, xj, ω
∗ (xi) ; p, θ) + cn}

+1 {M (xi, xj, ω
∗ (xi) ; p, θ)− cn < εij ≤M (xi, xj, ω

∗ (xi) ; p, θ)}] dFεij (εij)

= sup
p,θ

Fεij (M (xi, xj, ω
∗ (xi) ; p, θ) + cn)− Fεij (M (xi, xj, ω

∗ (xi) ; p, θ)− cn)

= sup
p,θ

fεij (M (xi, xj, ω
∗ (xi) ; p, θ) + ξcn) 2cn

≤ op (1)

where the second last equality follows from mean value theorem with some ξ ∈ [−1, 1]. We

conclude that

sup
p,θ
|Pn (xi, xj; p, θ)− P (xi, xj; p, θ)| = op (1) .

Proof of Lemma 5. Note that∑
j 6=i

∑
k 6=i,j

GijGika (Xj, Xk) =
∑
j 6=i

∑
k 6=i

GijGika (Xj, Xk)−
∑
j 6=i

Gija (Xj, Xj)

It suffi ces to show

a (Xj, Xk) =

∞∑
t=1

λtφt (Xj)φt (Xk)
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because ∑
j 6=i

∑
k 6=i

GijGik

∞∑
t=1

λtφt (Xj)φt (Xk) =
∞∑
t=1

λt

(∑
j 6=i

Gijφt (Xj)

)2
Let δXi (x) be the dirac delta function at Xi

δXi (x) =

{
∞, Xi = x

0, Xi 6= x
and

∫
X
δXi (x) dx = 1.

Because the eigenvectors form an orthonormal basis, function δXj (x) ∈ L2 (X ) has the

representation δXj (x) =
∑∞

t=1

〈
δXj , φt

〉
φt (x). Then we can obtain

a (Xj, Xk) =

∫
X
δXj (x) a (x,Xk) dx

=

∫
X

∞∑
t=1

〈
δXj , φt

〉
φt (x) a (x,Xk) dx

=
∞∑
t=1

φt (Xj)

∫
X
φt (x) a (x,Xk) dx (by dominated convergence theorem)

=
∞∑
t=1

φt (Xj) (Aφt) (Xk) (by definition of operator A)

=
∞∑
t=1

λtφt (Xj)φt (Xk) (by definition of λt and φt)
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